

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ngs_mapper 1.2.3 documentation

ngs_mapper

Version: 1.2.3

The ngs_mapper is a configurable pipeline next generation sequence pipeline that aims to be easy for the bioinformatician to install as well as use.
It focuses on documentation as well as easy configuration and running. The pipeline is also meant to get you from data to completed genome as easy as possible.

The documentation is a work-in-progress as the aim is to keep it as much up-to-date as possible with the pipeline as it changes. If anything seems out of place or wrong
please open a bug report on github [https://github.com/VDBWRAIR/ngs_mapper/issues]

Contents:

	Install
	Requirements

	Installation

	Upgrade
	If you activate the pipeline via ngs_mapper/setup

	If you installed using setup.py

	Configure
	Example changing single script defaults

	Example running runsample using config.yaml

	Example running runsamplesheet.sh using a custom config.yaml

	Structure of the config.yaml file

	Data Structure
	Getting Data into the data structure

	Diagram

	RawData

	ReadData

	ReadsBySample

	Platform Identification

	Running the Pipeline
	Complete Examples

	Changing defaults for pipeline stages

	Rerunning Samples

	Temporary Directories/Files

	Integration with the PBS Schedulers

	Help
	Traceback Error

	Frequently Asked Questions

	Pipeline Info
	Pipeline Output

	Scripts
	User Scripts

	Supplemental

	Libraries

	Deprecated

	Development
	Test Environment

	TODO List

Changelog

Version 1.2.3

	Added travis-ci support to automatically run tests when code is pushed to github

	Projects now default to running inside of a temporary directory inside of the
specified output directory(-od)

	runsample now sets TMPDIR to tmpdir inside of output directory so that all
analysis is run within that directory

Version 1.2.2

	runsample accepts –qsub_m and –qsub_l commands which will direct it to
return a PBS qsub job that can be piped into qsub

	Added Python 2.6 support

Version 1.2.1

	Removed all occurances of bqd.mpileup and replaced with samtools.mpileup

	Changed bqd.parse_pileup such that it utilizes samtools.MPileupColumn to
generate the dictionary items

	Remove legacy BamCoverage code that is not used anywhere

	Added support to select reads by specific platforms in runsample.py

	Fixed bug where MiSeq Index reads were being included in the mapping

	Renamed unpaired read file name that is produced by trim_reads from
a generic Roche454 read name to simply unpaired_trimmed.fastq

Version 1.2.0

	Added reflen to qualdepth.json files since length only told you the length
of the assembly and not the reference.

	Fixed issue where coverage graphic was not drawing gap lines at the end of
references because there was no data.

	sample_coverage colors were hard to distinquish so they were changed

	Bug with sample_coverage where certain combinations of # of references
and # of samples would generate a graphic where sub-plots for each reference
were overlapping

	Fixed incorrect command in doc/README.rst for how to open documentation with Firefox

	Fixed issue with sample_coverage’s usage statement and arguments description

	Fixed issue when no reads mapped and graphsample.py would raise an exception

	Fixed an issue when there were directories inside of the path specified that
contains read files

	Replaced all .py scripts with same name but without .py. This is the correct
way to have binary scripts for python. Aka, runsample.py is now just
runsample

Version 1.1.0

	Documentation updates

	Platforms now identified via identifiers inside read files instead of filenames

	IonTorrent sync added

	Various bug fixes

	base_caller.py can now utilize multiple processes to speed up analysis

	Documentation now installs with the pipeline

	run_bwa no longer makes temp directory but instead uses output path

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Install

Requirements

Hardware

	
	CPU

	
	
	Quad Core 2.5GHz or better

	
	More cores = faster run time when running multiple samples

	Faster GHz = faster each sample runs

	
	RAM

	
	This really depends on your data size

If you are analyzing a 96 sample run then you should be fine with 1GB per CPU core

If you are analyzing a 24 sample run then you will probably need about 4GB per CPU core since there will be more data

Python Packages

The pipeline comes with all of the necessary python packages already defined
inside of requirements.txt as well as requirements-py26.txt

System Packages

The pipeline requires some system level packages(software installed via your
Linux distribution’s package manager). The installer looks for
system_packages.lst and installs the correct
packages using that file. This file is a simple json formatted file that defines
packages for some common Linux distrubutions(CentOS, Red Hat and Ubuntu).

Roche Utilities

If you intend on using the roche_sync you will
need to ensure that the sfffile command is in your PATH. That is, if you
execute $> sfffile it returns the help message for the command.

This command should automatically be installed and put in your path if you install
the Data Analysis CD #3 that was given to you with your Roche instrument.

MidParse.conf

If you inted on using the roche_sync you may need
to edit the included ngs_mapper/MidParse.conf file before installing. This file is
formatted to be used by the Roche utilities and more information about how it is
used can be found in the Roche documentation.

Installation

	Clone/Download the version you want

Assumes you already have git installed. If not you will need to get it
installed by your system administrator.

	Set your github username

githubuser='mygithubusername'

	Clone the code

git clone https://${githubuser}@github.com/VDBWRAIR/ngs_mapper.git
cd ngs_mapper

	Check which versions are available

git tag

	Checkout the version you want(current version 1.2.3)

git checkout -b vX.Y.Z vX.Y.Z

	Install System Packages

This is the only part of the installation process that you should need to
become the super user

	Red Hat/CentOS(Requires the root password)

su -c 'python setup.py install_system_packages'

	Ubuntu

sudo python setup.py install_system_packages

	Configure the defaults

You need to configure the ngs_mapper/config.yaml file.

	Copy the default config to config.yaml

cp ngs_mapper/config.yaml.default ngs_mapper/config.yaml

	Then edit the ngs_mapper/config.yaml file which is in
yaml [http://docs.ansible.com/YAMLSyntax.html] format

The most important thing is that you edit the NGSDATA value so that it
contains the path to your NGSDATA directory.

The path you use for NGSDATA must already exist

mkdir -p /path/to/NGSDATA

	Python

The ngs_mapper requires python 2.6 or 2.7

	Quick verify that the correct version of Python is installed

The following should return python 2.6.x or 2.7.x

python --version

	Install supported Python version into your home directory

This is only needed if you do not have python 2.6.x or 2.7.x already.
Red Hat/CentOS comes pre-shipped with Python 2.6.6 and the latest versions
of Ubuntu come with 2.7.x so this is likely not needed.

If the above command does not return 2.6.x or 2.7.x and you think it should,
there is a chance that the system installed python is not first in your
environment’s PATH.

Here we specify to install into our home directory and to install Python
version 2.7.10. You can specify anywhere you want and any version(less than
3.0), but you will need to then specify the path to that python later on.

python setup.py install_python --prefix $HOME --version 2.7.10

	Setup virtualenv

	Where do you want the pipeline to install?
Don’t forget this path, you will need it every time you want to activate
the pipeline

venvpath=$HOME/.ngs_mapper

	Install the virtualenv to the path you specified

wget --no-check-certificate https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz#md5=f61cdd983d2c4e6aeabb70b1060d6f49 -O- | tar xzf -
python virtualenv-1.11.6/virtualenv.py --prompt="(ngs_mapper) " $venvpath

If you had to install your own version of python above, you will need to use
$HOME/bin/python instead of just python in the command above.

	Activate the virtualenv. You need to do this any time you want to start
using the pipeline

. ${venvpath}/bin/activate

	Install the pipeline into virtualenv

python setup.py install

It should be safe to run this more than once in case some dependencies do not
fully install.

Build and view complete documentation

cd doc
make clean && make html
firefox build/html/install.html#build-and-view-complete-documentation
cd ..

Verify install

You can pseudo test the installation of the pipeline by running the functional tests

nosetests ngs_mapper/tests/test_functional.py

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Upgrade

If you activate the pipeline via ngs_mapper/setup

	Completely remove the existing ngs_mapper directory.

	Then follow Install

If you installed using setup.py

	First fetch any possible updates

cd ~/ngs_mapper; git fetch

	Then check if you need to update

git status | grep -q 'Your branch is behind' && echo 'You need to update' || echo 'You are up-to-date'

If it returns You are up-to-date you are done

	Update(pull new code)

git pull

	Go into your ngs_mapper directory and rerun the setup script

python setup.py install

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

config.yaml

When you install the pipeline you are instructed to copy ngs_mapper/config.yaml.default to ngs_mapper/config.yaml
This file contains all settings that the pipeline will use by default if you do not change them using any of the script options that are available.

When you install the pipeline the config.yaml file gets installed with the pipeline into the installation directory(probably ~/.ngs_mapper)
In order to change the defaults after that you have two options:

	Edit config.yaml inside of the source directory you cloned with git, then go into your ngs_mapper directory and rerun the setup.py command

python setup.py install

	Use the make_example_config to extract the config.yaml into the current directory and use it

Example changing single script defaults

If you want to change the quality threshold to use to trim reads when you run trim_reads you would probably do something as follows:

	First what options are available for the command?

$> trim_reads --help
usage: trim_reads [-h] [--config CONFIG] [-q Q] [--head-crop HEADCROP]
 [-o OUTPUTDIR]
 readsdir

Trims reads

positional arguments:
 readsdir Read or directory of read files

optional arguments:
 -h, --help show this help message and exit
 --config CONFIG, -c CONFIG
 Path to config.yaml file
 -q Q Quality threshold to trim[Default: 20]
 --head-crop HEADCROP How many bases to crop off the beginning of the reads
 after quality trimming[Default: 0]
 -o OUTPUTDIR Where to output the resulting files[Default:
 trimmed_reads]

You can see that there is a -q option you can specify the quality threshold with

	Now run the command with your specific value

$> trim_reads -q 5 /path/to/my/input.fastq

This process works pretty slick until you notice that there is no way to easily tell runsample to specify that same value.
With the version 1.0 release of the pipeline there is now a config file that you can edit and change the Default value any script will use.

Example running runsample using config.yaml

	First we need to get a config file to work with

$> make_example_config
/current/working/directory/config.yaml

	We just need to edit that config.yaml file which should be in the current directory and change the trim_reads’s q option default value to 5 then save the file

	Now just run runsample as follows

$> runsample /path/to/NGSData /path/to/reference.fasta mysample -od mysample -c config.yaml
2014-11-28 14:39:14,906 -- INFO -- runsample --- Starting mysample ---
2014-11-28 14:39:14,906 -- INFO -- runsample --- Using custom config from config.yaml ---
2014-11-28 14:39:35,926 -- INFO -- runsample --- Finished mysample ---

Example running runsamplesheet.sh using a custom config.yaml

You will probably want to be able to run an entire samplesheet with a custom config file as well. If you check out the runsamplesheet.sh page you will notice that you can specify options to pass on to runsample by using the RUNSAMPLEOPTIONS variable

	Generate your config.yaml template

make_example_config

	Then run runsamplesheet.sh with your custom config.yaml

$> RUNSAMPLEOPTIONS"-c config.yaml" runsamplesheet.sh /path/to/NGSData/ReadsBySample samplesheet.tsv

Editing config.yaml

The config.yaml file is just a yaml [http://www.yaml.org] formatted file that is parsed using the python package pyaml [http://pyyaml.org/]
Yaml syntax links for reference:

	Quick start [http://docs.ansible.com/YAMLSyntax.html]

	More in depth [http://en.wikipedia.org/wiki/YAML]

For the ngs_mapper the most important thing is that the NGSDATA value is filled out and contains a correct path to the root of your Data Structure
The rest of the values are pre-filled with defaults that work for most general cases.

Structure of the config.yaml file

The config.yaml basically is divided into sections that represent defaults for each stage/script that the pipeline has.
It also contains some global variables such as the NGSDATA variable.

Each script/stage requires at a minimum of the default and help defined.

	default defines the default value that option will use

	
	help defines the help message that will be displayed for that option and probably does not need to be modified

	While yaml does not require you to put text in quotes, it is highly recommended as it will remove some parsing problems if you have special characters in your text such as a : or %

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Data Structure

At this time data is organized inside of what is called the NGS Data Structure. This structure is composed of 3 critical directories.

	RawData

	ReadData

	ReadsBySample

Getting Data into the data structure

See Syncing Data

Diagram

[image: _images/ngsdata_diagram.png]

RawData

RawData is composed of all files that originate from each of the instruments’ Run.
Some instruments may create ReadData as well or very close to ReadData, but it is still considered RawData.

Some examples of RawData would be:

	Run_3130xl_ directories containing *.ab1 files(Sanger)

	Directories under the MiSeqOutput directory(MiSeq)

	R_* directories containing signalProcessing or fullProcessing directories(Roche)

ReadData

ReadData is any sequence file format that can be utilized by NGS mapping/assembly applications.
At this time these file formats typically end with the following extensions:

.ab1
.sff
.fastq

ReadsBySample

This directory contains only directories that are named after each of the samplenames that have been sequenced. The concept of this folder is to make it very easy to look up all data related to a given samplename.o

Platform Identification

See the following naming regular expressions defined in ngs_mapper.data for more information about how platforms are identified via the read identifiers inside the files

	sanger

	miseq

	roche

	iontorrent

If you have files that do not match any platform the pipeline will essentially ignore them and you may get errors when you run runsample.

This should only be an issue if you somehow rename the identifiers.

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Analysis

Contents

	Analysis
	Complete Examples
	Quick note about your files

	Using runsample to run a single sample
	Simplest form of runsample

	Getting extended help for runsample

	Specifying output directory for analysis

	Specifying specific platforms to map

	Output from runsample explained

	Viewing bam files

	Using runsamplesheet.sh to run multiple samples in parallel

	Changing defaults for pipeline stages

	Rerunning Samples

	Temporary Directories/Files

	Integration with the PBS Schedulers
	Example

Complete Examples

Here we will show you a complete example of running the pipeline using some test data that is included with the source code.

Note: Any time you see

$> command

It means you should be able to type that into your terminal

All examples will assume your current working directory is inside of the git cloned ngs_mapper directory, aka the following command
ends with ngs_mapper:

$> pwd

For both examples below, as always when running the pipeline, you need to ensure your installation is activated:

$> . ~/.ngs_mapper/bin/activate

The location of our data sets are under ngs_mapper/tests/fixtures/functional

$> ls ngs_mapper/tests/fixtures/functional
780 780.conf 780.ref.fasta 947 947.conf 947.ref.fasta

Here you can see we have 2 data sets to play with.

	780 is an H3N2 data set

	947 is a Dengue 4 data set

You will notice that there is a 780/947 directory and a 780/947.ref.fasta file. The 780/947 directory contains all the read files for the 780/947 sample while the 780/947.ref.fasta is the reference to map to.
You can ignore the .conf files, they are used by the automated tests.

Quick note about your files

In previous versions of the pipeline the names of your read files were used to identify which platform the reads came from.

Now the reads are identified via the way the first identifier in each file is named.

You can read more about this here

Using runsample to run a single sample

Some times you just need to run a single sample. Here we will use runsample to run the 947 example data set and have the analysis be put into a directory called 947 in the current directory

First, let’s see what options there are available for the runsample script to use

$> runsample
usage: runsample [-h] [--config CONFIG] [-trim_qual TRIM_QUAL]
 [-head_crop HEAD_CROP] [-minth MINTH] [--CN CN]
 [-od OUTDIR]
 readsdir reference prefix
runsample: error: too few arguments

What you can take from this is:

	Anything inside of a [] block means that argument to the script is optional and has a default value that will be used if you do not specify it.

	readsdir, reference and prefix are all required arguments that you MUST specify

Simplest form of runsample

So to run the project with the fewest amount of arguments would be as follows(don’t run this, just an example):

$> runsample ngs_mapper/tests/fixtures/functional/947 ngs_mapper/tests/fixtures/functional/947.ref.fasta -od 947 947

This will run the 947 data and use the 947.ref.fasta file to map to. All files will be prefixed with 947.
Since we did not specify the -od argument, all the files from the pipeline get dumped into your current directory.

Most likely you will want to specify a separate directory to put all the 947 specific analysis files into. But how?

Getting extended help for runsample

We can get extended help information which should print the defualts as well from any script by using the --help option

$> runsample --help
runsample --help
usage: runsample [-h] [--config CONFIG] [-trim_qual TRIM_QUAL]
 [-head_crop HEAD_CROP] [-minth MINTH] [--CN CN]
 [-od OUTDIR]
 readsdir reference prefix

Runs a single sample through the pipeline

positional arguments:
 readsdir Directory that contains reads to be mapped
 reference The path to the reference to map to
 prefix The prefix to put before every output file generated.
 Probably the samplename

optional arguments:
 -h, --help show this help message and exit
 --config CONFIG, -c CONFIG
 Path to config.yaml file
 -trim_qual TRIM_QUAL Quality threshold to trim[Default: 20]
 -head_crop HEAD_CROP How many bases to crop off the beginning of the reads
 after quality trimming[Default: 0]
 -minth MINTH Minimum fraction of all remaining bases after
 trimming/N calling that will trigger a base to be
 called[Default: 0.8]
 --CN CN Sets the CN tag inside of each read group to the value
 specified.[Default: None]
 -od OUTDIR, --outdir OUTDIR
 The output directory for all files to be put[Default:
 /home/myusername/ngs_mapper]

You can see that --help gives us the same initial output as just running runsample without any arguments, but also contains extended help for all the arguments. The --help argument is available for all ngs_mapper scripts.
If you find one that doesn’t, head over to Creating Issues and file a new Bug Report.

So you can see the -od option’s default is our current directory. So if we want our analysis files to go into a specific directory for each sample we run we can specify a different directory. While we are at it, lets try specifying some of the other optional arguments too.

Specifying output directory for analysis

Let’s tell runsample to put our analysis into a directory called 947 and also tell it to crop off 20 bases from the beginning of each read.

$> runsample -od 947 -head_crop 20 ngs_mapper/tests/fixtures/functional/947 ngs_mapper/tests/fixtures/functional/947.ref.fasta 947
2014-12-22 10:17:52,465 -- INFO -- runsample --- Starting 947 ---
2014-12-22 10:21:28,526 -- INFO -- runsample --- Finished 947 ---

You can see from the output that the sample started and finished. If there were errors, they would show up in between those two lines and you would have to view the Help documentation.

Specifying specific platforms to map

Sometimes you may find the need to only run specific platforms. Maybe you only
will want to run MiSeq read files through the pipeline.

The 947 example project has Roche454, MiSeq and Sanger read files in it, so we
can use it in this example to only map the MiSeq read files

	Generate your example config which we will edit

make_example_config

	Now edit the config.yaml file generated in the current directory
#. Find the trim_reads section and change the default under platforms to be

trim_reads:
 headcrop:
 default: 0
 help: 'How many bases to crop off the beginning of the reads after quality
 trimming[Default: %(default)s]'
 outputdir:
 default: trimmed_reads
 help: 'Where to output the resulting files[Default: %(default)s]'
 q:
 default: 20
 help: 'Quality threshold to trim[Default: %(default)s]'
 platforms:
 choices:
 - MiSeq
 - Sanger
 - Roche454
 - IonTorrent
 default:
 - MiSeq
 #- Sanger
 #- Roche454
 #- IonTorrent
 help: 'List of platforms to include data for[Default: %(default)s]'

Notice Sanger, Roche454 and IonTorrent are commented out. You can either
comment them out or completely delete them.

	Then you can run runsample with the -c config.yaml argument and it
will only use MiSeq reads

$> runsample -od 947 -head_crop 20 ngs_mapper/tests/fixtures/functional/947 ngs_mapper/tests/fixtures/functional/947.ref.fasta 947 -c config.yaml

Output from runsample explained

So what analysis files were created? You can see them by listing the output directory:

$> ls 947
-rw-r--r--. 1 myusername users 36758279 Dec 22 10:19 947.bam
-rw-r--r--. 1 myusername users 96 Dec 22 10:19 947.bam.bai
-rw-r--r--. 1 myusername users 10869 Dec 22 10:21 947.bam.consensus.fasta
-rw-r--r--. 1 myusername users 269058 Dec 22 10:21 947.bam.qualdepth.json
-rw-r--r--. 1 myusername users 204502 Dec 22 10:21 947.bam.qualdepth.png
-rw-r--r--. 1 myusername users 1291367 Dec 22 10:20 947.bam.vcf
-rw-r--r--. 1 myusername users 2414 Dec 22 10:21 947.log
-rw-r--r--. 1 myusername users 307180 Dec 22 10:21 947.reads.png
-rw-r--r--. 1 myusername users 10840 Dec 22 10:17 947.ref.fasta
-rw-r--r--. 1 myusername users 10 Dec 22 10:18 947.ref.fasta.amb
-rw-r--r--. 1 myusername users 67 Dec 22 10:18 947.ref.fasta.ann
-rw-r--r--. 1 myusername users 10744 Dec 22 10:18 947.ref.fasta.bwt
-rw-r--r--. 1 myusername users 2664 Dec 22 10:18 947.ref.fasta.pac
-rw-r--r--. 1 myusername users 5376 Dec 22 10:18 947.ref.fasta.sa
-rw-r--r--. 1 myusername users 2770 Dec 22 10:21 947.std.log
-rw-r--r--. 1 myusername users 17219 Dec 22 10:18 bwa.log
-rw-r--r--. 1 myusername users 380 Dec 22 10:20 flagstats.txt
-rw-r--r--. 1 myusername users 249 Dec 22 10:21 graphsample.log
-rw-r--r--. 1 myusername users 137212 Dec 22 10:19 pipeline.log
drwxr-xr-x. 2 myusername users 4096 Dec 22 10:21 qualdepth
drwxr-xr-x. 2 myusername users 4096 Dec 22 10:18 trimmed_reads
drwxr-xr-x. 2 myusername users 4096 Dec 22 10:17 trim_stats

You can view information about each of the output files via the runsample-output-directory

Viewing bam files

An easy way to view your bam file quickly from the command line if you have igv [http://www.broadinstitute.org/igv/] installed is like this:

igv.sh -g 947/947.ref.fasta 947/947.bam

Using runsamplesheet.sh to run multiple samples in parallel

runsamplesheet.sh is just a wrapper script that makes running runsample on a bunch of samples easier.

You just have to first create a Samplesheet then you just have to run it as follows:

$> runsamplesheet.sh /path/to/NGSData/ReadsBySample samplesheet.tsv

So let’s run the 947 and 780 samples as our example.

	Make a directory for all of our analysis to go into

$> mkdir -p tutorial
$> cd tutorial

	Create a new file called samplesheet.tsv and put the following in it(you can use gedit samplesheet.tsv to edit/save the file):

947 ../ngs_mapper/tests/fixtures/functional/947.ref.fasta
780 ../ngs_mapper/tests/fixtures/functional/780.ref.fasta

	Run your samplesheet with runsamplesheet.sh

$> runsamplesheet.sh ../ngs_mapper/tests/fixtures/functional samplesheet.tsv
2014-12-22 12:30:25,381 -- INFO -- runsample --- Starting 780 ---
2014-12-22 12:30:25,381 -- INFO -- runsample --- Starting 947 ---
2014-12-22 12:30:50,834 -- INFO -- runsample --- Finished 780 ---
2014-12-22 12:34:08,523 -- INFO -- runsample --- Finished 947 ---
1.82user 0.05system 0:01.01elapsed 185%CPU (0avgtext+0avgdata 242912maxresident)k
0inputs+728outputs (1major+26371minor)pagefaults 0swaps
5.02user 0.11system 0:04.03elapsed 127%CPU (0avgtext+0avgdata 981104maxresident)k
0inputs+3160outputs (1major+77772minor)pagefaults 0swaps
2014-12-22 12:34:19,843 -- WARNING -- graph_times Projects/780 ran in only 25 seconds
2014-12-22 12:34:19,843 -- INFO -- graph_times Plotting all projects inside of Projects

You can see that the pipeline ran both of our samples at the same time in parallel. The pipeline tries to determine how many CPU cores your system has and will run that many samples in parallel.

You can then view all of the resulting output files/directories created

$> ls -l
total 1184
-rw-r--r--. 1 myusername users 2101 Dec 22 12:34 graphsample.log
-rw-r--r--. 1 myusername users 50794 Dec 22 12:34 MapUnmapReads.png
-rw-r--r--. 1 myusername users 756139 Dec 22 12:34 pipeline.log
-rw-r--r--. 1 myusername users 34857 Dec 22 12:34 PipelineTimes.png
drwxr-xr-x. 4 myusername users 4096 Dec 22 12:34 Projects
-rw-r--r--. 1 myusername users 292764 Dec 22 12:34 QualDepth.pdf
-rw-r--r--. 1 myusername users 52064 Dec 22 12:34 SampleCoverage.png
-rw-r--r--. 1 myusername users 122 Dec 22 12:28 samplesheet.tsv
drwxr-xr-x. 2 myusername users 4096 Dec 22 12:34 vcf_consensus

You can view advanced usage and what each of these output files mean by heading over to the runsamplesheet.sh

Changing defaults for pipeline stages

If you want to change any of the settings of any of the pipeline stages you will need to create a config.yaml and supply it to runsample using the -c option. You can read more about how to create the config and edit it via the config.yaml script’s page

Rerunning Samples

Rerunning samples is very similar to just running samples.

	Copy and edit the existing Samplesheet and comment out or delete the samples you do not want to rerun.

	
	Run the runsamplesheet.sh script on the modified samplesheet

	
	Note: As of right now, you will have to manually remove the existing project directories that you want to rerun.

	
	Regenerate graphics for all samples

	
	The -norecreate tells it not to recreate the qualdepth.json for each sample which is very time consuming. The reran samples should already have recreated their qualdepth.json files when runsample was run on them.

graphs.sh -norecreate

	You should not have to rerun consensuses.sh as it just symlinks the files

Temporary Directories/Files

The pipeline initially creates a temporary analysis directory for each sample that you run with runsample.

The name of this temporary directory will be samplenameRANDOMrunsample

This directory will be located inside of each project’s specified output directory
that was given with -od

If the project fails to complete for some reason then you will need to look inside of that directory for relevant log files to inspect what happened.

Integration with the PBS Schedulers

runsample has the ability to output a PBS job file instead of running. This may be
useful if you have access to a PBS Cluster. By default the PBS job that is generated
is very simplistic.

	The job will change directory to the same directory that qsub is run from

	runsample is then run with the same arguments that were given to generate the
pbs job without the –qsub arguments.

Example

$> runsample ngs_mapper/tests/fixtures/functional/947{,.ref.fasta} 947 --outdir 947test --qsub_l nodes=1:ppn=1 --qsub_M me@example.com
#!/bin/bash
#PBS -N 947-ngs_mapper
#PBS -j oe
#PBS -l nodes=1:ppn=1
#PBS -m abe
#PBS -M me@example.com
cd $PBS_O_WORKDIR
runsample ngs_mapper/tests/fixtures/functional/947 ngs_mapper/tests/fixtures/functional/947.ref.fasta 947 --outdir 947test

You can see that the job that was generated essentialy just stripped off any
–qsub_ arguments and will rerun the same runsample command in the job.

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Help

Eventually you will run across some errors. No application/software is without bugs.
Here we will compile all of the most common errors and what to look for to find out what is going on

Traceback Error

You will likely encounter a Traceback error at some point due to either a bug or maybe you are running one of the commands incorrectly.

The traceback errors will look like this:

Traceback (most recent call last):
 File "/home/username/.ngs_mapper/bin/roche_sync", line 9, in <module>
 load_entry_point('ngs_mapper==1.0.0', 'console_scripts', 'roche_sync')()
 File "/home/username/.ngs_mapper/lib/python2.7/site-packages/ngs_mapper/roche_sync.py", line 100, in main
 args = parse_args()
 File "/home/username/.ngs_mapper/lib/python2.7/site-packages/ngs_mapper/roche_sync.py", line 236, in parse_args
 defaults = config['roche_sync']
 File "/home/username/.ngs_mapper/lib/python2.7/site-packages/ngs_mapper/config.py", line 29, in __getitem__
 'Config is missing the key {0}'.format(key)
ngs_mapper.config.InvalidConfigError: Config is missing the key roche_sync

The easiest way to get good information from the traceback is by working your way backwards(from the bottom to the top).

From this Traceback you should notice that the last line is telling you that the config.yaml file is missing the key roche_sync. You would then edit your config.yaml file and ensure that key exists and then rerun the python setup.py install portion of the Install.

The traceback is simply Python’s way of displaying how it got to the error that was encountered. Typically, but not always, the last line of the output contains the most relevant error. If you submit a bug report, make sure to include the entire Traceback though.

Frequently Asked Questions

	
	There is an error. What do I do?

	There are a few log files that you can check. The output on your screen should give you the location of the log file to check for errors.

As well you can look under the directory of any project and look in files that end in .log

For instance, if a run fails for any reason it will spit many lines to the screen. When you read through the lines you will see one that mentions “Check the log file” followed by a path to a bwa.log. Navigate to the bwa.log to
view a detailed log of what happened.

There are two other log files which are in the same directory as bwa.log [samplename].std.log and [samplename].log. You can check any of these log files to determine what happend during the run.

Finally, you can also check the pipeline.log file that is generated when the pipeline is done or if it err’d out.

If you are still not sure, you can search through previous issues on the GitHub Issue Tracker [https://github.com/VDBWRAIR/ngs_mapper/issues] and/or submit a new bug/feature

	
	Where should I run the analysis?

	This is for the most part up to you but eventually you will want the entire analysis folder to end up under /path/to/Analysis somewhere
You will want to minimize how much the traffic has to travel across the network though. So if you simply create a folder under /path/to/Analysis/PipelineRuns and then you run the pipeline from there, you will essentially be doing the following:

	Reading the reads across the network for each sample

	Writing the bam files across the network for each sample

	Reading the bam files across the network for each sample

	Writing stats across the network

	Reading the stats file across the network

	Writing graphics files across the network

Suggestion Create the analysis folder somewhere on your computer and run the pipeline there and then transfer the entire folder to the storage server afterwards

	
	How many CPUs does my computer have?

	Try running the following command to get how many physical CPU’s and how many cores/threads they have

for pid in $(awk '/physical id/ {print $4}' /proc/cpuinfo |sort|uniq)
do
 echo "--- Processor $pid ---"
 egrep -xA 12 "processor[[:space:]]: $pid" /proc/cpuinfo
done

	
	How many CPUs should I use?

	Check out the command above for more info on how to get how many CPU/Core/Threads you have. Probably best to use (cpu cores * number of processors)

If your output was the following then you would probably want to use (2 * 6)

--- Processor 0 ---
processor : 0
...
physical id: : 0
siblings : 12
core id : 0
cpu cores : 6
...
--- Processor 1 ---
...
processor : 0
physical id: : 1
siblings : 12
core id : 0
cpu cores : 6
...

That all being said, you could also try using (number of processors * siblings) or 24 in the above example,
but that may actually slow down your analysis

	
	How much RAM do I have?

	The following command will tell you how much memory you have in MB

free -m | awk '/Mem:/ {print $2}'

	
	The pipeline fails on samples and the bwa.log says something about failing on the reference index

	Make sure to check that you have permissions to read the reference file. The last thing to check is that the reference is formatted correctly in fasta format.

	
	There is an error running vcf_consensus that has to do with string index out of bounds

	This has to do with an outdated version of base_caller generating the vcf file you are trying to run vcf_consensus on. See Issue #143 for more information on how to fix that.

	
	The pipeline fails on a sample and the log says Somehow no reads were compiled

	This usually indicates that it could not find any reads inside of the location you specified that should contain sample reads. Make sure that the directory you specified when you ran runsamplesheet.sh or ngs_mapper.runsample actually contains a directory with reads for every sample you are running.
Also check for errors near the top of the log file that say anything about why any reads might have been skipped

	
	The pipeline keeps failing on all of my samples or the logs say something about No Space Left On Device

	Please check your /dev/shm and /tmp to see if either is full(df -h). You can clear out all of the left-over junk from the pipeline by issuing rm -rf /tmp/runsample* /dev/shm/mapbwa*
Also, you may need to tell the pipeline to use a different temporary directory. See Temporary Directories/Files for more information.

	
	You get a Traceback error that contains ngs_mapper.config.InvalidConfigError: Config is missing the key missingkey

	This indicates that the initial config.yaml file that you created during the Install is missing a required key: value pair called missingkey. This most likely happened because you updated the pipeline which introduced new keys in config.yaml.base that you need to add to your config.yaml.

Once you add those new keys, you will need to rerun the python setup.py install portion of the Install.

	
	You get errors related to no display name and no $DISPLAY environemt variable when createing graphics

	See Issue 75 [https://github.com/VDBWRAIR/ngs_mapper/issues/75]

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

 	Help

Creating Issues

Since the source code for this project is hosted on GitHub, it also comes with an issue tracker.

All feature requests, bugs and other communications are all kept there. This gives both the developers and users a common place to
discuss all aspects of the pipeline as well as give a nice resource to help find answers to questions that might have already been asked.

Submitting a Bug

First, please make sure you read through the Frequently Asked Questions and also do a search for existing similar issues [https://github.com/VDBWRAIR/ngs_mapper/issues?q=is%3Aissue]

If you can’t find anything in either of those sources that address your issue, then go ahead and create a New Issue [https://github.com/VDBWRAIR/ngs_mapper/issues/new]

Make sure to include the following information:

	Description of the error that you are encountering

	The command you ran that generated the error

	The entire Traceback Error if there is one

	Any pertinant information about the issue

You may be asked later to attach files from your project so don’t delete any of the files yet.

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Pipeline Info

[image: _images/ngs_mapper_diagram.png]

Pipeline Output

The pipeline can be run as a batch job or it can be run individually. That is, you can run it on many samples by supplying a Samplesheet to runsamplesheet.sh or a single sample can be run via runsample.
As such, you need to understand that [[runsamplesheet.sh]] essentially just runs runsample for every sample in your [[samplesheet]] then runs a few graphics scripts afterwards on all the completed projects.

	
	Individual sample project directories under Projects/

	
	runsample output

	
	Entire Project output

	
	graphs.sh output

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Scripts

User Scripts

These are scripts that you run directly that will run the Supplemental scripts

	stats_at_refpos

	runsamplesheet.sh

	runsample

	graphs.sh

	consensuses.sh

	miseq_sync

	roche_sync

	sanger_sync

	ion_sync

	rename_sample

	make_example_config

Supplemental

These are scripts that you can run manually, however, they are run automatically by the User Scripts above

	run_bwa_on_samplename

	vcf_consensus

	gen_flagstats.sh

	graphsample

	graph_mapunmap

	tagreads

	base_caller

	graph_times

	trim_reads

	fqstats

	sample_coverage

Libraries

Python Scripts/Modules that you can import to do other analysis

	ngs_mapper.run_bwa

	ngs_mapper.reads

	ngs_mapper.data

	ngs_mapper.bam

	ngs_mapper.alphabet

	ngs_mapper.stats_at_refpos

	ngs_mapper.samtools

	ngs_mapper.log

Deprecated

Scripts that are no longer used, but kept for reference in the deprecated directory

	varcaller.py

	variants.sh

	perms.sh

	gen_consensus.sh

	setup

	install.sh

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

Development

Contributing to the pipeline is fairly straight forward. The process is as follows:

	Fork the VDBWRAIR ngs_mapper project [https://github.com/VDBWRAIR/ngs_mapper] on GitHub

	git clone your forked version to your local computer

	
	Make changes to the code and ensure everything is tested

	
	[[Make Tests]]

	Once you have tested all your changes you should commit them and push them up to your github fork of the project

	After you have pushed your changes to your fork on github you can create a pull request which essentially notifies the ngs_mapper maintainers that you have changes that you would like to apply and they can try them out.

Test Environment

The easiest way to ensure that the installer and everything works is to bring up a blank virtual machine to test inside of

The project is configured with a Vagrant [https://www.vagrantup.com/] file to make this easier

The Vagrant file that comes with the pipeline is configured to automatically provision either a CentOS 6.5 or Ubuntu 12.04 virtual machine.
You can bring either or both up with one of the following commands:

	CentOS 6.5

vagrant up centos

	Ubuntu 14.04

vagrant up ubuntu

	Both

vagrant up

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ngs_mapper 1.2.3 documentation

TODO List

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ngs_mapper 1.2.3 documentation

 Python Module Index

 .

 			

 		
 .	

 	
 	
 .vagrant-provision	

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ngs_mapper 1.2.3 documentation

Index

 Symbols

Symbols

 	

 	.vagrant-provision (module)

 Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

 scripts/graphs.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

graphs.sh

Purpose

Very simple shell script to create graphics for samples that were mapped.

Creates

		
		In each sample’s directory

		
		
		<samplename>.bam.qualdepth.json

		
		Base statistics file for that sample. Read more about [[qualdepth.json]]

		
		<samplename>.bam.qualdepth.png

		
		Shows Depth/Quality and Mapped/Unmapped for that sample for every reference(Basically all *.png in qualdepth directory compiled into this file)

		
		qualdepth/

		
		Directory that contains a qualdepth image for each reference that had reads that mapped

		
		QualDepth.pdf

		
		All qualdepth.png files are compiled into this png to easily view each Sample in one file

		The QualDepth.pdf file will show you the quality(green) vs. depth(blue) over the mapped genome as well as how many mapped(green) vs. unmapped(red). Typically you want around 37 for the quality and the depth will vary depending on experiment, but you don’t want it to dip below 10.

		You can use the evince command to open the file directly from your terminal evince QualDepth.pdf

		
		MapUnmapReads.png

		
		Shows Mapped/Unmapped reads for each sample as well as Total Mapped/Total Unmapped in one graph to point out samples that have issues

		This graphic is to show quickly any samples that may have a lot of unmapped reads which could indicate an incorrect reference or some other issues.

		
		SampleCoverage.png

		
		Shows an easy to digest coverage graphic for each sample to know where ‘issue’ areas are on the genome

		sample_coverage has more info

		
		PipelineTimes.png

		
		Graphic that shows how many seconds each sample took to run

Basic Usage

Generate all qualdepth.png files inside of each project

graphs.sh

If qualdepth.json files already exist(you already generated them someplace else), then you can run graph.sh and tell it not to recreate them
Very useful if you are simply updating the graphics or recreating them because you accidentally deleted some. If the bam files have changed you will not
want to use this, but instead you will want to recreate the qualdepth.json files(maybe manually so you don’t have to recreate all of them which takes a while)

graphs.sh -norecreate

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

vagrantfile.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

Vagrantfile

This is the configuration file for Vagrant [http://www.vagrantup.com]
It instructs vagrant on how to provision each of the virtual machines.

Essentially it brings up whichever vagrant box you tell it in the vagrant up command.
It ensures that any OS dependant things are handled prior to running vagrant-provision
When it is finished the Vagrant box you bring up should have the pipeline and all dependencies completely installed

CentOS 6.5

You refer to this machine using centos65 in any of the vagrant commands:

vagrant up centos65

Ubuntu 14.04

You refer to this machine using ubuntu1404 in any of the vagrant commands

vagrant up ubuntu1404

How to use vagrant

You will need to read the documentation at www.vagrantup.com
If you are just interested in how to bring up or destroy a vagrant box you can skip directly to the Command Line Interface [http://docs.vagrantup.com/v2/cli/index.html]

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

syncuser.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

Sync User

Check to see if there is a sync user exists on the computer you are on

Assuming that the sync user was created with the name “ngssync” you can check for it as follows:

id ngssync

Outputs either:

		User does not exist

id: ngssync: No such user

		User exists

uid=500(ngssync) gid=500(ngssync) groups=500(ngssync)

Which tells you that the user exists and the user id is 500, primary group id is 500, and a full list of all the groups that user is in. In this case ngssync is only in the one group which is also the same as the primary group(ngssync)

Create the Sync User

		You need to be root to create a new user

su -

		Setup some useful variables for later

sync_username="ngssync" # Change this if you want
ngs_data_path="/path/to/your/NGSData" # Set this to your path

		Then create the user account

useradd -s /bin/bash ${sync_username}
passwd ${sync_username}

		Setup the default umask for this account so files/directories are read only

echo "umask 0022" >> ~/.bash_profile

Ensure your sync user has read/write/execute to your data

Check access to files

You need to make sure that your sync user has rwx access to your NGS Data Structure

$> ls -l /path/to/NGSData
dr-xr-xr-x. 8 ngssync ngssync 4096 Jul 14 11:56 RawData
drwxr-xr-x. 7 ngssync ngssync 4096 Jul 9 08:07 ReadData
drwxr-xr-x. 3667 ngssync root 286720 Sep 15 16:22 ReadsBySample

Listing format:

		permissions
		ignore
		owner
		group
		size
		date
		directory/file

The important thing is that the ngssync is the username listed for the owner(3rd column) and that the permissions start with

drwx

So in the example above you can see that the RawData is owned by ngssync but does not have w(write) permissions which is wrong. You may think that ReadsBySample is setup incorrectly since the root group is set as the group(4th column), but that really doesn’t matter since ngssync has rwx(read/write/execute) permissions.

If you see a directory that looks incorrect you can fix it with the following command:

su -c "chown -R ngssync /path/to/directory; chmod -R u=rwX,go=rX /path/to/directory"

Requires root privileges

Be patient as this can take a really long time if you have lots of data

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

cifs.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

CIFS

Create Share User

		Right click My Computer

		Click Manage

		Select Local Users and Groups

		Double click users

		Click Action->New User

		
		Fill in the form as follows

		
		User name: miseqdata

		Full Name: MiSeq Data

		Description: User account to access MiSeq sequencing data

		Password: <complex password of your choice>

		Unselect user must change password

		Select User cannot change password

		Select Password never expires

		The form should look like this when filled out

[image: _images/create_user.png]

		Click Create

Create Share

		Open My Computer

		Open the Data(D:) drive

		Open the Illumina folder

		Right Click the MiSeqOutput folder

		Click Properties

		Click Sharing Tab

		Click Advanced Sharing

		Check ‘Share this folder’

		Leave Share Name as is

		Click permissions

		Click add

		Type in miseqdata and press ok

		Select Everyone

		Click Remove

		
		Ensure everything is set like this

		[image: _images/create_cifs_share.png]

		Click OK in the Permissions window

		Click in the Advanced Sharing window to create the share

Ensure the MiSeq firewall allows access to the shares

		Start

		Control Panel

		Network and Sharing Center

		Click Windows Firewall in the bottom left of the screen

		Clcik Advanced settings in the left pane

		Click Inbound Rules

		
		Create a new firewall rule

		
		Click Action in the top menu

		Click New Rule...

		Click Port

		Click Next

		
		Fill out the form as follows

		[image: _images/smbtcp.png]

		Click Next

		Allow the connection

		Click Next

		Check Domain, Private and Public

		Click Next

		The name should be SMB TCP

		Click Finish

		Repeat the steps to create a new rule except in step 5 select UDP instead of TCP and name the rule SMB UDP

		
		When you are finished you should have two rules that show up as follows

		[image: _images/rules.png]

Mount CIFS in Linux

Instructions on how to mount a windows share read-only that mounts on startup.
If you are unsure if a share is already mounted you can use the <pre>mount</pre> command to list all mounted filesystems

		Become super user

su -

		Ensure you have cifs-utils installed

yum install -y cifs-utils

		Create mount point

mkdir -p /path/to/mountpoint
chmod 755 /path/to/mountpoint

		Create credentials file

cat <<EOF > /etc/credentials.share001
username=share_username
password=password_for_username
EOF
chmod 600 /etc/credentials.share001

		Create fstab entry

cat <<EOF >> /etc/fstab
//<windows_ip_address>/<sharename> /path/to/mountpoint cifs ro,credentials=/etc/credentials.share001
EOF

		Mount the drive

mount -a

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

vagrant-provision.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

vagrant-provision.py

Just a wrapper around the manual installation process.

Comes with two options:

		vagrant-provision.py –install-system-packages

		vagrant-provision.py –install-pipeline

Install System Packages

Just runs the following in a command shell

python setup.py install_system_packages

Install Pipeline

Essentially runs all the steps after the system package installation for you

		git clone to ~/ngs_mapper

		python setup.py install_python

		setup virtualenv into ~/.ngs_mapper

		activate ~/.ngs_mapper

		python setup.py install

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

ngsdatasync.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

Syncing Data

Sync User

To ensure data is protected from accidental deletion/modification it is suggested that you setup a sync user on your system and run the sync scripts as that user.
This way if you accidentally run a command such as

rm -rf /path/to/NGSData

You will only get permission denied instead of accidentally deleting your data

Running a sync command as your sync user

You will have to login to the sync user before running the commands in order to use that account to sync the data
This could mean that you use the su, sudo or just ssh as that user. This will depend on your system setup

The following scripts exist to sync data from an instrument into the data structure:

		roche_sync

		miseq_sync

		sanger_sync

		ion_sync

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

samplesheet.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

Samplesheet

You just need to make a file somewhere that is space or tab delimited with the first column being the sample name and the second column being the path to the reference to use to map that sample.
An easy way to get all the samplenames is by looking inside the MiSeq output directory where you will find a SampleSheet.csv file that you can open with excel/libreoffice

The resulting file should look very similar to this:

my_precious_sample1 /path/to/references/reference1.fasta
my_precious_sample2 reference2.fasta
sample3 /path/to/contatenated_references.fasta

Note: This file does not contain any headers, but any line that starts with a # will be ignored so you could make the first line as follows if you want to:

Samplename Reference

Concatenate References

Command to concatenate fasta files for more than one reference if you intend to try multiple references.

cat file1.fasta file2.fasta file3.fasta > Flu__ConcatRefs.fasta

Note

Remember: If you are running you samples against a concatenated set of references, you will need to look at the output to determine which reference worked best for a given sample then re-run the pipeline on that sample or set of samples with the specific reference to ensure maximum use of data for that sample in assembly.

Generate Samplesheeet from MiSeq run

Pulls out every samplename from a MiSeq SampleSheet.csv and creates a file that has samplename<TAB>REFPATH<NEWLINE>

awk -F',' '/^[0-9][0-9][0-9],/ {printf("%s\tREFPATH\n",$2);} /path/to/miseqrun/SampleSheet.csv > samplesheet.tsv

Command to generate a samplesheet from a 454 Run File

Pulls out the column with the samplename and the column with the reference

awk '!/^[!#]/{printf("%s\t%s\n",$2,$6)}' runfile.txt > samplesheet.tsv

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

qualdepth.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

qualdepth.json

This is the base statistics file that is generated from a given bam file. It is intended to contain all supporting information that will be useful to create graphics and do other statistical analysis through an easy means of simply loading this file.

Typically the qualdepth.json file is generated via the graphsample script, but can be manually created for any given bam file via the BamCoverage’s bam_to_qualdepth.py script.

h2. Loading the file in Python

It is amazingly simple to load json files in python using the build in json module

import json
stats = json.load(open('qualdepth.json'))

Now you have access to all of the stats as follows:

		Unmapped Reads

stats['unmapped_reads']

		References

reflist = [ref for ref in stats if ref != 'unmapped_reads']

		Stats about a given reference

ref = reflist[0]
refstats = stats[ref]
mapped_reads = refstats['mapped_reads']
depths = refstats['depths']
quals = refstats['avgquals']
reflen = refstats['length']
minqual = refstats['minq']
maxqual = refstats['maxq']
mindepth = refstats['mind']
maxdepth = refstats['maxd']

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

_images/ngsdata_diagram.png
lon Torrent

NGS Data Directory

Read Data Reads By Sample

_images/ngs_mapper_diagram.png
Single Sample Mapping

Create version controlled project Generate how mary reads wentto
iy each reference and how mary.

L_ . J unmapped reads for each reference

‘Copy reference into project ‘Generate Qualty vs. Depth graphic

_J for each réference n the mapping

Inputs W a2y ﬁmy (e graphics for each read fle

threshold and optionally remove a T

speciied amount of bases from the Qualt
Required beginning of each read — -

‘Generate consensus sequence flom
Map allreads in Reads Directory for the outputted VCF fie

e I E—

Qptonalwth Detaus 1) at gl ence e s [Seve o curerestoa e o]
B e el e e oot ey
L= N e et i et et

== @ag allreads in the resuing

‘assembly with the platiom from
‘which the originated flom

‘Generate a vef file for the mapping
that contains statistcs about each

base position for each reference as.
well‘as the Called Base for each

position.

_images/create_cifs_share.png
Advanced Sharing =] Permissions for MiSeqOutput E

Share Permissions.

Settings Group ot user names:
Share name: 3 MiSeq Data (Hl-M02281 \miseadata)
Ms=qoutp:
acd | Remave
Liric the rumber of smutancous iserstor zp 5
Commerts: [A | [TRemove
Permisions fo MiSeq Data Ao Dery
Ful Control o o
Change & &
g

Leain about ascess contol and permissions

Com)

_images/create_user.png
New Lser

Username: mseqdad |
Eullname: MiSeq Data

Desciptiors User account 0 access MiSeq sequencing data
Password

Do password:

User must changs password at next logon
9] Uger cannct change password
7] Password never expites

Accouts disabled

Help

Cieate

Close.

_static/create_cifs_share.png
Advanced Sharing =] Permissions for MiSeqOutput E

Share Permissions.

Settings Group ot user names:
Share name: 3 MiSeq Data (Hl-M02281 \miseadata)
Ms=qoutp:
acd | Remave
Liric the rumber of smutancous iserstor zp 5
Commerts: [A | [TRemove
Permisions fo MiSeq Data Ao Dery
Ful Control o o
Change & &
g

Leain about ascess contol and permissions

Com)

_images/smbtcp.png
8 NewInbound Rule Wizord

Protocol and Ports

Speciy the protocals and pors to which tis e appliss.

Steps:
o RueTie Doss tis e apply 0 TCP r LIDP?
@ Protocoland Pors ® 1P

o hoion uop

o Pl

o Name

Dies his rle apply o allocal pots or specifslocal pots?

Alllocal ports
© Specificlocal ports: 13713813844
Example: 80, 443, 50005010

Leain mare sboul protocol and potts

et) o) (o)

_images/rules.png
8 Windows Firewall with Advanced Security

File Action View Help
a2

& Windows Firewsll with Advancs
B3 Inbound Rules
3 Outbound Rules
K Connectian Security Rules
» % Monitaring

Inbound Rules
Group Profile Enabled Action

@ Miseq ReporterUDP
@sveTcP A e Alow
@svuoe A e Alow
i BITS Peercaching (Content-In) BITS Peercaching Al MNo Allow

_static/comment-close.png

_static/up.png

_static/minus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/create_user.png
New Lser

Username: mseqdad |
Eullname: MiSeq Data

Desciptiors User account 0 access MiSeq sequencing data
Password

Do password:

User must changs password at next logon
9] Uger cannct change password
7] Password never expites

Accouts disabled

Help

Cieate

Close.

_static/ngsdata_diagram.png
lon Torrent

NGS Data Directory

Read Data Reads By Sample

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/ngs_mapper_diagram.png
Single Sample Mapping

Create version controlled project Generate how mary reads wentto
iy each reference and how mary.

L_ . J unmapped reads for each reference

‘Copy reference into project ‘Generate Qualty vs. Depth graphic

_J for each réference n the mapping

Inputs W a2y ﬁmy (e graphics for each read fle

threshold and optionally remove a T

speciied amount of bases from the Qualt
Required beginning of each read — -

‘Generate consensus sequence flom
Map allreads in Reads Directory for the outputted VCF fie

e I E—

Qptonalwth Detaus 1) at gl ence e s [Seve o curerestoa e o]
B e el e e oot ey
L= N e et i et et

== @ag allreads in the resuing

‘assembly with the platiom from
‘which the originated flom

‘Generate a vef file for the mapping
that contains statistcs about each

base position for each reference as.
well‘as the Called Base for each

position.

_static/up-pressed.png

_static/smbtcp.png
8 NewInbound Rule Wizord

Protocol and Ports

Speciy the protocals and pors to which tis e appliss.

Steps:
o RueTie Doss tis e apply 0 TCP r LIDP?
@ Protocoland Pors ® 1P

o hoion uop

o Pl

o Name

Dies his rle apply o allocal pots or specifslocal pots?

Alllocal ports
© Specificlocal ports: 13713813844
Example: 80, 443, 50005010

Leain mare sboul protocol and potts

et) o) (o)

_static/rules.png
8 Windows Firewall with Advanced Security

File Action View Help
a2

& Windows Firewsll with Advancs
B3 Inbound Rules
3 Outbound Rules
K Connectian Security Rules
» % Monitaring

Inbound Rules
Group Profile Enabled Action

@ Miseq ReporterUDP
@sveTcP A e Alow
@svuoe A e Alow
i BITS Peercaching (Content-In) BITS Peercaching Al MNo Allow

_static/comment.png

_static/down.png

scripts/consensuses.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

consensuses.sh

Uncompleted documentation

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

scripts/runsamplesheet.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

runsamplesheet.sh

Runs runsample on every sample/reference pair inside of a Samplesheet

Usage

runsamplesheet.sh /path/to/ReadsBySample /path/to/samplesheet.tsv

Passing options to runsample

You can run runsamplesheet.sh and pass arguments to runsample by prepending RUNSAMPLEOPTIONS=”” to the command

Example: adding -minth option

This would run each sample and pass “-minth 0.95” to runsample

RUNSAMPLEOPTIONS="-minth 0.95" runsamplesheet.sh /path/to/ReadsBySample /path/to/samplesheet.tsv

Example: Supplying custom config.yaml file

		Generate your custom config.yaml

make_example_config

		Edit the config.yaml generated to suit your needs

		Run runsamplesheet.sh with custom config.yaml

RUNSAMPLEOPTIONS="-c config.yaml" runsamplesheet.sh /path/to/ReadsBySample /path/to/samplesheet.tsv

Creates

		
		graphsample.log

		
		Logfile from running graphsample on all samples in samplesheet

		
		MapUnmapReads.png

		
		Graphic that shows each sample’s mapped vs unmapped read counts

		
		pipeline.log

		
		Logfile that contains essentially the same information on the console you get when you run runsample except it also includes debug lines

		PipelineTimes.png(See graphs.sh)

		
		Projects

		
		All output from runsample placed under Projects named after each sample

		QualDepth.pdf(See graphs.sh)

		SampleCoverage.png(See graphs.sh)

		
		vcf_consensus

		
		Contains symbolic links(shortcuts) to each sample’s consensus.fasta file

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

scripts/gen_flagstats.html

 Navigation

 		
 index

 		
 modules |

 		ngs_mapper 1.2.3 documentation »

gen_flagstats.sh

 © Copyright 2014, Tyghe Vallard, Melanie Melendrez.
 Created using Sphinx 1.3.5.

